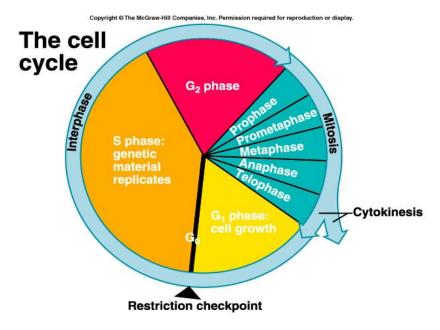
Cell cycle and apoptosis

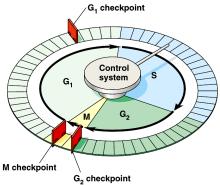

Cell cycle

- Cell cycle
 - -Definition
 - -Stages and steps
 - Interphase (G1/G0, S, and G2)
 - Mitosis (prophase, metaphase, anaphase, telophase, karyokinesis, cytokinesis)
 - -Control checkpoints
- Apoptosis
 - Definition
 - Types of cell death
 - Apoptotic pathways

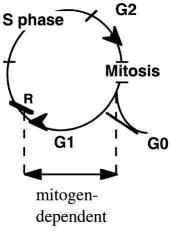
Cell cycle

- The time a cell spent between birth and the end of cell division
- Why cells divide?
 To keep an organism healthy and running
- Why cells die?
 - To keep an organism healthy and running

Who decides?


http://www.cellsalive.com/mitosis.htm

Cell cycle


•2 phases: interphase – division

INTERPHASE- 90% of the time

•<u>G1</u>: newly formed cells absorb nutrients and protein mass doubles along with the number of organelles (G1-restriction point control before DNA replication)

Cell cycle

From: <u>The Restriction Point of the Cell Cycle</u> Madame Curie Bioscience Database [Internet]. Austin (TX): <u>Landes Bioscience</u>; 2000-. <u>Copyright</u> © 2000-2013, Landes Bioscience.

Cell cycle – G1 phase

- From G1, cells may stop the cell cycle and enter the G0 phase - resting in the absence of extracellular signals division; G0 cells do not grow in size
- Stopping in G0 can be :
 - Final terminally differentiated cells neurons, skeletal muscle cells
 - Temporary: liver cells

Cell cycle

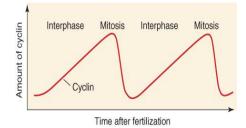
 MAPK signaling pathway initiates cell cycle progression

Cell cycle

- Progression from one phase to another is controlled by checkpoints
 - G1
 - G2
 - -M

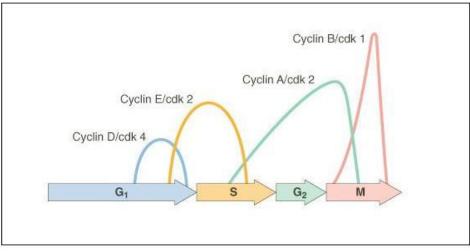
"A checkpoint is one of several points in the eukaryotic cell cycle at which the progression of a cell to the next stage in the cycle can be halted until conditions are favorable."

Source: Boundless. www.boundless.com/biology/textbooks/boundless-biology-textbook/cell-reproduction-10/control-of-the-cell-cycle-89/regulation-of-the-cell-cycle-89/regulation-of-the-cell-cycle-89/regulation-of-the-cell-cycle-89/regulation-91-the-cycle-89/regulation-91-the-cycle-89/regulation-91-the-cycle-89/regulation-91-the-cycle-89/regulation-91-the-cycle-89/regulation-91-the-cycle-89/regulation-91-the-cycle-89/regulation-91-the-cycle-89/regulation-91-the-cycle-89/regulation-91-the-cycle-89/regulation-91-the-cycle-89/regulation-91-the-cycle-89/regulation-91-the-cycle-89/regulation-91-the-cycle-89/regulation-91-the-eycle-89/regulation-91-the-cycle-89/regulation-91-the-cycle-89/regulation-91-the-cycle-89/regulation-91-the-cycle-89/regulation-91-the-eycle-89/regulation-91-the-91-the-eycle-89/regulation-91-the-91-the-91-the-91-the-91-the-91-the-91-the-91-the-91-the-91-the-91-the-91

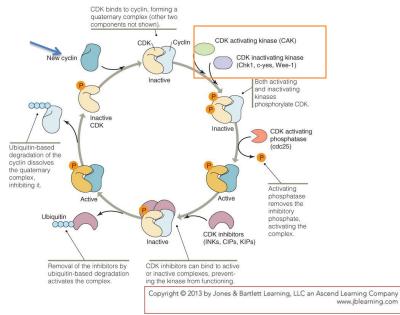

G1 checkpoint

- The G1 point at which commitment occurs and the cell no longer requires growth factors to complete the cell cycle
- Also known as "restriction point" or "the point of no return"
- What is different between the "before" and "after" of G1?

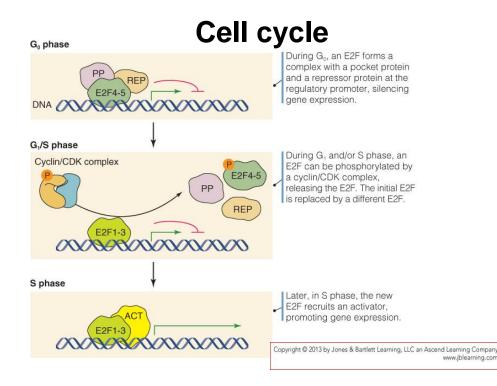
Cell cycle


- MAPK signaling pathway initiates cell cycle progression, by synthesis of G1 specific cyclins
- Cyclin an unstable protein which is induced, stabilized and accumulates in a specific phase of the cell cycle

The cycle of a cyclin


Copyright © 2013 by Jones & Bartlett Learning, LLC an Ascend Learning Company www.jblearning.com

http://facweb.furman.edu/~wworthen/bio111/mitosis.htm



Copyright © 2013 by Jones & Bartlett Learning, LLC an Ascend Learning Company www.jblearning.com

Cell cycle

• The drive behind G1 to M progression is E2F transcription factor family

Cell cycle – S phase

• <u>S</u>: DNA replication, for mitosis; at the end of this phase, each chromosome is composed of two sister chromatids - cell has two sets of chromosomes (4n)

•Growth factor - independent!

•Arrest in S phase can occur, if unrepairable DNA damage or shortage of nucleotides

Cell cycle – G2 phase

- <u>G2</u>: cells continue to grow, preparing for mitosis (G2-restriction point control before mitosis)
- G2 kinases prevent DNA re-replication
- Cell checks for DNA damage

G2/M checkpoint

- Cell checks for:
 - DNA damage
 - Presence of proteins required for cell division
- DNA damage checkpoint genes (p53) are activated by breaks in the double strand of DNA

MITOSIS:

- takes place in somatic cells of all eukaryotic organisms (containing the restriction point M)

- equal distribution of the 2 sets of chromosomes between the two daughter cells (a cell diploid parent creates two diploid daughter cells)

- division of the nucleus (karyokinesis) precedes division cytoplasm (cytokinesis)

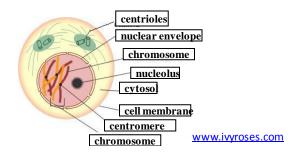
-phases: 1. Prophase

2. Metaphase

3. Anaphase

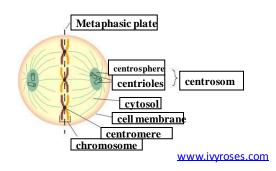
4. Telophase

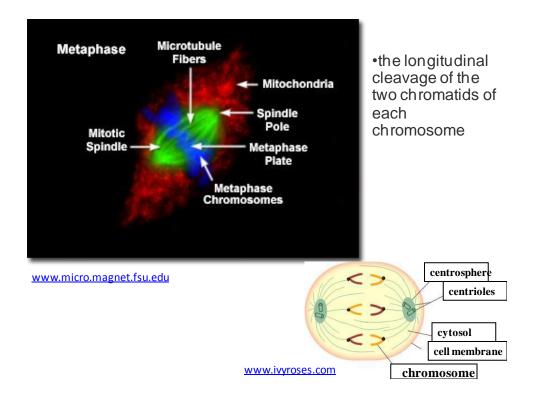
- Cytokinesis - separation of cytoplasm


MITOSIS – Organelles rearrangement

- Organelles still exist, although not in their "classical" (interphase) ultrastructure:
 - Nucleus disorganizes
 - RE, Golgi fragment in many vesicles
 - Specific organelle: mitotic spindle organized by microtubules

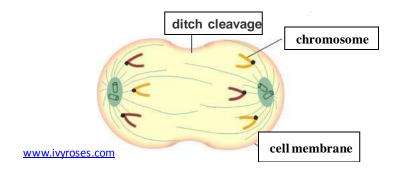
Prophase


- chromatin condenses to form *chromosomes*.
- sister chromatids are joined at the centromere
- cyclin B/cdc2 phosphorylates lamins
- progressive disorganization of nucleoli

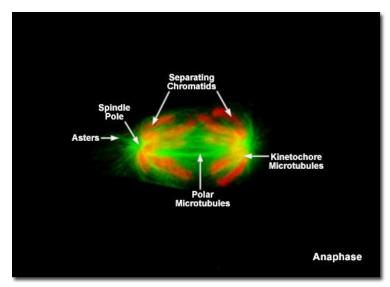

-centrosome doubles and moves to opposite poles of the cell, forming between them spindle fibers

Metaphase

- each chromatid is attached to microtubules belonging to one of the centrosomes
- line up in the equatorial area, forming metaphase plate

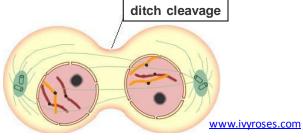


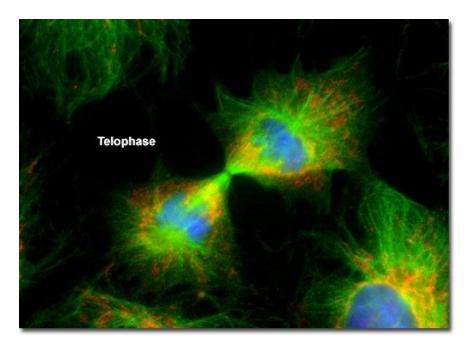
M checkpoint


- Cell checks for attachment of all sister chromatids to mitotic spindle
- Mitotic spindle fibers attach with their plus end to the kinetochore of each chromatid

Anaphase

• sister chromatids separate and migrate to the cell poles using dynein

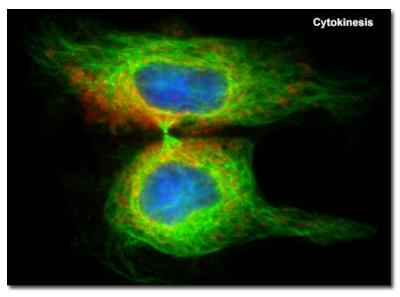

Anaphase



meiosis-and-mitosis.pbworks.com

Telophase

- chromosomes reach division spindle poles, and decondenses
- division spindle disorganization
- reorganization of the nuclear envelope (around the two nuclei)
- contractile ring formation in the equatorial plane perpendicular to the long axis of the spindle



www.micro.magnet.fsu.edu

Cytokinesis

• cytoplasm division and organelles separation between the two daughter cells

• result: 2 daughter cells

www.micro.magnet.fsu.edu

MEIOSIS

- reduce the number of chromosomes, so that each daughter cell has a haploid number of chromosomes
- specific to the gametes
- Roles:

 ensure diploid number of chromosomes in the egg cell (fecundated oocyte)
 provide a combination of particular features to the descendants

MEIOSIS

-2 stages: the first meiotic division and the second meiotic division

- before the first meiotic division, DNA replication is achieved with double the number of chromosomes
- each chromosome consists of two chromatids
- in meiosis occur 2 nuclear divisions and result 4 haploid nuclei
- between meiosis I and II, there has been no multiplication of genetic material

Essentials on chromosomes' status

Meiosis I separates the chromosomes of a pair daughter cells are haploid

 chromosomes have two chromatids identical or recombinant

Meiosis II separates sister chromatids

• resulting cells undergoes maturation giving rise to gametes

• *fertilization* restores the diploid number of chromosomes

Forms of cell death

- Criteria
 - Morphological (apoptotic, necrotic, autophagic or associated with mitosis)
 - Enzymological (with or without involvement of caspases or other lytic enzymes, such as nucleases)
 - Functional aspects (programmed or accidental, physiological or pathological)
 - Immunological characteristics (immunogenic or nonimmunogenic)

Forms of cell death

Apoptosis – the physiological type of cell death

-Gene-controlled program

-Is characterized morphologically by cell shrinkage, plasma membrane blebbing, nuclear condensation, and DNA fragmentation. The dead cell is packaged into membrane-bound apoptotic bodies, which are engulfed and removed by neighboring cells or tissue phagocytes. Apoptosis is usually associated with minimal inflammation

Forms of cell death

- Necrosis is characterized by loss of plasma membrane integrity, organelle and cell swelling, and ultimately, <u>cell lysis</u>
- Necroptosis shares some critical inductive-phase features with apoptosis but possesses many of the morphological characteristics of necrosis.
- - swelling of the cell and its organelles, particularly the mitochondria, and by consequent cell implosion.

Apoptosis Pathways

(*a*) the intrinsic pathway, gated by proteins encoded by the *BCL-2* gene family, which control the release of specific caspase-activating factors from mitochondria

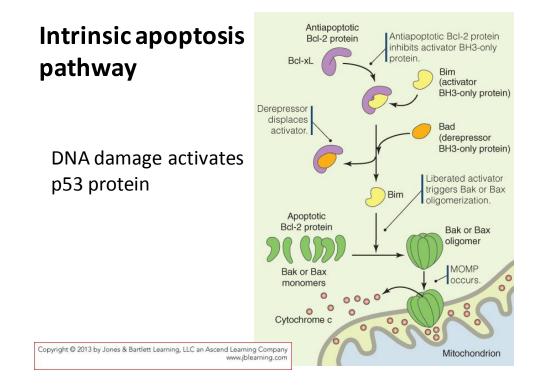
(b) the extrinsic pathway – specialized death receptors, which transmit signals from extracellular death ligands across the plasma membrane to engage the intracellular caspase machinery.

In both cases, executants of apoptosis are caspases!

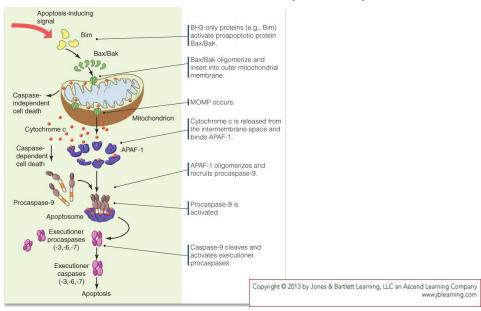
Apoptosis

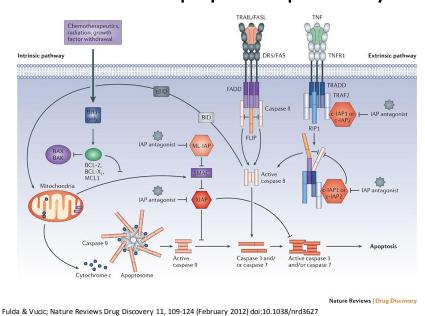
 Caspases are members of a protein family with protease activity

- Synthesized in inactive form


- Some members have regulatory function (8, 9), also called initiator caspases
 - activate effector caspases (3, 6, 7) by proteolysis
- Effector caspases
 - drive the execution phase of the apoptotic death program by cleaving hundreds or even thousands of structurally and functionally critical proteins within the cell.

Intrinsic apoptosis


- Controlled by Bcl2 proteins
- Executed by caspases
- Specific molecular complex: apoptosome


Apoptosis control

- Anti-apoptotic Bcls prevent caspases activation
- Pro-apoptotic Bcls lead to activation of caspases

Mitochondrial Outer Membrane Permeabilization (MOMP)

Review on apoptosis pathways

Summary

- Cell life can be divided into interphase and mitosis/meiosis
- The cell cycle is only partially dependant on extrinsic signals
- Advancement through cell cycle depends on/is controlled by cyclins-cyclin-dependant kinases and has several checkpoints
- Further reading at http://www.ncbi.nlm.nih.gov/books/NBK26824/

Summary

- There are many ways for a cell to die
- Apoptosis is the genetically-determined type of cell death
- Apoptosis can be intrinsic or extrinsic
- The effectors of apoptosis are the caspases
- Further reading at http://www.ncbi.nlm.nih.gov/books/NBK26873/