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Objectives Here we assess the intrinsic functions of the chemokine receptor CXCR4 in remodeling after myocardial infarc-
tion (M) using Cxcr4 heterozygous (Cxcr4 ™/ ) mice.

Background Myocardial necrosis triggers complex remodeling and inflammatory changes. The chemokine CXCL12 has been
implicated in protection and therapeutic regeneration after Ml through recruiting angiogenic outgrowth cells,
improving neovascularization and cardiac function, but the endogenous role of its receptor CXCR4 is unknown.

Methods MI was induced by ligation of the left descending artery. Langendoff perfusion, echocardiography, quantitative
immunohistochemistry, flow cytometry, angiogenesis assays, and cardiomyocyte analysis were performed.

Results After 4 weeks, infarct size was reduced in Cxcr4"/~ mice compared with wild-type mice and in respective bone

Conclusions

marrow chimeras compared with controls. This was associated with altered inflammatory cell recruitment, de-
creased neutrophil content, delayed monocyte infiltration, and a predominance of Gr1'°" over classic Gr1"s"
monocytes. Basal coronary flow and its recovery after Ml were impaired in Cxcr4 "/~ mice, paralleled by reduced
angiogenesis, myocardial vessel density, and endothelial cell count. Notably, no differences in cardiac function
were seen in Cxcr4 "/~ mice compared with wild-type mice. Despite defective angiogenesis, Cxcr4 ™/~ mouse
hearts showed no difference in CXCL12, vascular endothelial growth factor or apoptosis-related gene expression.
Electron microscopy revealed lipofuscin-like lipid accumulation in Cxcr4"/~ mouse hearts and analysis of lipid
extracts detected high levels of phosphatidylserine, which protect cardiomyocytes from hypoxic stress in vitro.

CXCR4 plays a crucial role in endogenous remodeling processes after MI, contributing to inflammatory/progeni-
tor cell recruitment and neovascularization, whereas its deficiency limits infarct size and causes adaptation to
hypoxic stress. This should be carefully scrutinized when devising therapeutic strategies involving the CXCL12/
CXCR4 axis. (J Am Coll Cardiol 2011;58:2415-23) © 2011 by the American College of Cardiology Foundation

In addition to governing hematopoetic cell trafficking, the
CXCR4 ligand SDF-1a/CXCL12 has been shown to
promote tissue regeneration by mediating recruitment of
progenitor cells in ischemic areas (1-3). Therefore, the
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Abbreviations
and Acronyms

EOC = early outgrowth cell

interaction between CXCL12
and CXCR4 is increasingly ex-
ploited to enhance the efficacy of
stem cell therapy after myocardial
infarction (MI) (4). Exogenous
CXCL12 applied by myocardial
injection or overexpressed in
transplanted cardiomyocytes, as well as overexpression of
CXCR4 in mesenchymal stem cells, induces therapeutic
angiogenic/progenitor cell homing (5-7), increasing capil-
lary density and improving cardiac function after MI (8,9).
On the other hand, CXCL12 directly activates the cell-
survival factor protein kinase B (PKB/Akt) via CXCR4 and
protects ischemic myocardium, decreasing scar formation
and mediating neovascularization in mice and rats (10,11).

The intrinsic role of endogenous CXCL12/CXCR4 in
MI, however, is far from being conclusively elucidated. For
instance, administration of the selective CXCR4 antagonist
AMD3100 reduced scar formation and improved cardiac
contractility after MI (12). Moreover, CXCL12 can induce
both survival and apoptotic signals via CXCR4, which may
ultimately determine the fate of afflicted tissues (13). We
therefore studied the function of CXCR4 in cardiac remod-
eling after MI in genetically modified mice to evaluate a
potential relevance for unwanted effects of pharmacologic
compounds (14). However, mice deficient in Cxcr4 display
profound defects in the hematopoietic and nervous systems
and die perinatally. They have severely reduced B-lymphopoiesis,
myelopoiesis in fetal liver, and a virtual absence of myelo-
poiesis in bone marrow (15). Therefore, we chose to assess
the effects of reduced CXCR4 expression after MI in mice
heterozygous for CXCR4 (Cxcr4 /™), which appear normal
and are viable and fertile (15), although CXCR4 surface
expression on bone marrow—derived mononuclear cells
from Cxcr4 ™/ “mice is significantly lower compared with that
in wild-type BL6/] mice (16).

MI = myocardial infarction

PS = phosphatidylserine

Methods

For the mouse model of MI and details of other methods
(e.g., reverse transcriptase polymerase chain reaction analy-

sis [Online Table 1]), please see the Online Appendix.

Results

Analysis of MI size and inflammatory cell content. Four
weeks after MI, the infarct size was reduced in Cxcr4'/~
mice by 42% compared with Cxer4 "™ littermates (Fig. 1A).
As evident by tetrazolium/Evans blue staining, the area at
risk 1 day after MI showed no difference in the 2 groups
(Online Fig. 1A), indicating that the reduced infarct size
likely reflects an enhanced wound contraction and altera-
tions in reparative pathways rather than a difference in the
initial extent of cardiomyocyte injury. Moreover, myofibro-
blast infiltration (2,600 * 283/mm? vs. 1 011 = 165/mm?
in controls, p < 0.001) and collagen content in the infarcted
area were significantly higher in Cxc4™'~ mice than in

JACC Vol. 58, No. 23, 2011
November 29, 2011:2415-23

wild-type controls (Fig. 1B), indicating a more stable and
robust scar formation.

We next analyzed the mobilization and recruitment of
inflammatory cells after MI. The MI-induced and transient
expansion of neutrophils in the circulation (Fig. 1C) and
infiltration of the infarcted area with neutrophils (Fig. 1D)
were severely reduced in Cxcr4™'~ mice 1 day after ML
Thus, the initial inflammatory response differed markedly in
Cxer4™'~ mice, indicating a prominent role of CXCR4 in
post-infarction neutrophil recruitment. Further, peripheral
blood monocyte levels did not differ between Cxcr4 ™~ mice
and wild-type mice after MI (Online Fig. 1B), whereas the
myocardial infiltration with monocytes/macrophages pre-
sented a slight delay in Cxe4™~ mice compared with
wild-type mice (Online Fig. 1C).

Analysis of monocyte subsets revealed fewer circulating
Gr-1"8" cells and relative expansion of Gr-1'" cells in
peripheral blood of Cxcr4 "~ mice compared with wild-type
mice after MI (Fig. 1E). These data correspond to dimin-
ished infiltration with proinflammatory tissue-degrading
Gr-1"8" monocytes 4 days after MI, whereas Gr-1'%
monocytes, known to promote wound healing and collagen
deposition (17), were increased in the hearts of Cxerd™'~
mice compared with wild-type mice (Fig. 1F). Thus, the
inflammatory reaction after MI in Cxcr4"”~ mice is shifted
to an earlier termination of the acute response and onset of
a repair process involving Gr-1"" monocytes. Notably,
whereas CXCR4 expression on Gr-1"" monocytes from
Cxer4™'~ mice (specific mean fluorescence intensity, 31.5 +
3.0) was reduced by 43% compared with that on Gr-1'%
monocytes from wild-type mice (specific mean fluorescence
intensity, 61.9 = 7.4), the low CXCR4 expression on
Gr-1"8" monocytes did not differ between wild-type mice
and Cxcr4™’~ mice (specific mean fluorescence intensity,
6.8 *= 3.5 vs. 5.2 = 1.5). This suggests a strong adaptation
of Gr-1"" cells to reduced CXCR4 expression and a
possible role of other receptors in their recruitment.
Analysis of cardiac function after MI. Echocardiography
(Online Table 2) and Langendorfl (Table 1) measurements
surprisingly failed to reveal changes in ventricular function
and contractility after MI in Cxcr4™~ mice compared with
wild-type mice. However, we observed a slightly decreased
baseline ejection fraction as well as a moderate increase in
the post-MI ejection fraction in Cxcr4 ™'~ mice compared
with wild-type mice. Moreover, the difference in ejection
fraction before and after MI was significantly decreased in
Cxer4™'~ mice compared with wild-type mice (7.6 = 1.2%
vs. 16.8 = 2.4%, p < 0.01), implying a protective or
adaptive mechanism in the hearts of Cxcr4™~ mice.

Moreover, coronary perfusion was markedly decreased in
Cxer4™'~ mice compared with wild-type mice, as deter-
mined by coronary flow measurements in isolated perfused
hearts. Coronary flow was already reduced under baseline
conditions in Cxcr4 ™~ mice compared with wild-type mice
(Table 1, Fig. 2A). Ligation of the left anterior descending
artery decreased coronary flow by approximately 50% in
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Compared with wild-type mice, Cxerd™/~ mice display a significantly smaller infarct size (A) and a significant increase in myocardial collagen content (B) (scale bar =
50 um) 4 weeks after myocardial infarction (MI). Neutrophil counts in peripheral blood (€) and neutrophil infiltration in myocardium (D) are reduced in Cxerd™/~ mice
compared with wild-type mice after MI. Analysis of the Gr—:l.h‘gh/Gr-:I.IOW ratio showed a relative shift toward Gr-1'°" cells in blood of Cxcr4™/~ mice compared with wild-
type mice (E). The G.t'»l“‘gh/Gr-:L‘OW ratio in myocardium revealed a transient reversal after Ml in both groups (F) and an earlier return to baseline levels in Cxerd™/~ mice

both groups (Figs. 2A and 2B). Four weeks after MI, the
recovery of coronary perfusion was significantly impaired in
Cxcr4™’~ mice (Online Table 2, Fig. 2A).

To assess whether defective cardiac angiogenesis and neo-
vascularization after MI contribute to the differences in coro-
nary blood flow, myocardial endothelial cells and vessels were
quantified. As determined by flow cytometry, the number of
myocardial endothelial cells was intrinsically reduced in
Cxer4™'~ mice compared with wild-type mice (Fig. 2C).
Similarly, neovascularization after MI was impaired in
Cxer4™~ mice compared with wild-type mice, as evident by
reduced formation of CD31™ blood vessels in infarcted myo-
cardium (Fig. 2D). This might contribute to the defective
recovery of coronary flow after MI in Cxcr4 ™~ mice. More-
over, the number of primary branches of coronary arteries (Fig.
2E) as shown by micro-angio-computed tomography, as well
as the number of cremasteric artery branches as quantified by
intravital microscopy (data not shown) was diminished in

Cxer4™'~ mice compared with wild-type mice without evi-
dence of disturbed endothelial permeability, as shown by
perfusion of the cremasteric artery with albumin—fluorescein
isothiocyanate. This indicates that the endogenous defect in
angiogenesis was not restricted to the heart.

Moreover, to distinguish the influence of the CXCR4
heterozygous background and its role in circulating cells, bone
marrow chimera experiments were performed after lethal irradia-
tion. Four weeks after MI, the infarction area was significantly
reduced in wild-type mice transplanted with Cxe4™’~ bone
marrow and in Cxe4™’~ mice transplanted with wild-type bone
marrow compared with the control group (Fig. 3A). In addition to
the effects attributable to reduced leukocyte infiltration, these data
suggest the existence of an additional intrinsic mechanism that can
substantially influence scar formation in our model. Notably,
neovascularization after MI was impaired in both groups com-
pared with controls, as evident by CD31" staining in infarcted
myocardium (Fig. 3B), whereas heart function, as assessed by
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Functional Parameters of Wild-Type and Cxcr4*/~ Hearts

Langendorff Perfusion

Before MI 4 Weeks After MI
Wild Type Cxcrd*/~ Wild Type Cxcrdt/~
Parameter (n=3-4) (n = 3-5) (n = 4-5) (n = 5-6)
LVDP, mm Hg 86.7 = 8.8 78.3 £ 17.0 40.0 =10.1 50.0 = 11.5
Increase after dobutamine (A) 40.3 4.0 46.2 + 5.2 13.8 + 4.3 10.3 =+ 2.6
dPdt max, mm Hg/s 3,189 + 99 3,058 + 363 1,540 = 97 1,590 + 94
Increase after dobutamine (A) 2,410 = 629 1,941 + 187 770 £ 91 704 =74
dPdt min, mm Hg/s —2,695 = 244 —2,011 = 411 —1,267 = 111 —1,280 = 79
Increase after dobutamine (A) —1,756 + 544 —1,407 = 314 545 + 28 484 + 68
Coronary flow, ml 3.9+0.2 2.0 = 0.3* 3.2+03 12+ 0.3*
Increase after brief ischemia (A) 34*+02 28 +0.1 18+04 0.2 £ 0.1*

Values are mean * SD. *p < 0.05 versus wild type.

dPdt = derivative of pressure increase (maximum) and decay (minimum); LVDP = left ventricular developed pressure; Ml = myocardial infarction.

echocardiography and Langendorff perfusion showed no signifi-
cant differences between the groups (Fig. 3C). The reduction of
neovascularization was more pronounced in Cxe4™'~ mice trans-
planted with wild-type bone marrow and correlated with de-
creased coronary flow (Fig. 3D). This may reflect that the
vascularization of the scar is based mostly on vessel formation

around pre-existing collaterals, which may explain the markedly
reduced neovascularization in Cxer#'~ mice despite reconstitu-
tion with wild-type bone marrow.

The myocardial infiltration with neutrophils, as well as
blood leukocyte subsets (Fig. 3E) after MI in Cxcr4'~ mice
transplanted with wild-type bone marrow emulate the pattern
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(A) Langendorff perfusion revealed a reduction of coronary flow in Cxerd™/™ mice compared with wild-type mice at both basal conditions and 4 weeks after myocardial
infarction (MI). (B) Despite equivalent flow reduction after MI, recovery of coronary flow after Ml, represented as percentage of basal coronary flow, was impaired in
Cxerd™/~ mice compared with wild-type mice. (C) Flow cytometry analysis indicated a decreased number of endothelial cells in myocardial tissue. (D) CD31 staining con-
firmed the impairment in neoangiogenesis in cxerd™/~ mice compared with wild-type mice (scale bar = 50 um). (E) The quantification of the branches of the coronary
artery showed a marked impairment of vessel density in Cxerd™/~ mice compared with wild-type mice under basal conditions (red arrows indicate left anterior descend-
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ventricular developed pressure (LVDP) (Langendorff) were unaltered. (D) Coronary flow revealed reduced perfusion in wild-type mice transplanted with Cxerd™/~ bone
mice transplanted with wild-type bone marrow compared with the control group. As analyzed by flow cytometry, blood leukocyte subset counts in
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Cxcrd™/~ mice, but not in the other groups. *p < 0.05 versus control. wt = wild type.
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in Cxcr4*'™ mice, indicating a shift toward an earlier termi-
nation of the acute response and earlier onset of a repair process.
The role of CXCR4 for early outgrowth cells trafficking
and function. Because early outgrowth cells (EOCs) con-
tribute to post-infarction neoangiogenesis, the effect of
Cxcr4 on EOC function was studied. Despite endothelium-
like properties of both Cxcr4™'~ EOCs and wild-type
EOQCs, the function of Cxer4™'~ EOCs was impaired, as
shown in chemotaxis or Matrigel assays in vitro and in vivo.
(Online Fig. 2). For more details, see the Online Appendix.
Myocardial apoptosis after MI. No difference in myocar-
dial apoptosis after induction of MI was observed in
Cxcr4™~ mice and wild-type mice after MI, as assessed by
quantifying TUNEL (deoxyuride-5'-triphosphate biotin nick
end labeling)-positive cells and by reverse transcriptase poly-
merase chain reaction for Bax and Bcl2 expression (Online Fig. 3).
For more details, please see the Online Appendix.

Electron microscopy and characterization of lipid extracts. To
detect structural alterations, we performed electron microscopy
in the hearts of the Cxc4 "'~ mice and wild-type mice before
or 1 day after MI. Wild-type myocardium displayed extensive
signs of necrosis with dramatic cellular disintegration (Fig. 4A).
In infarcted Cxcrd™'~ myocardium, signs of myofibril disor-
ganization, and cardiomyocyte swelling were present, but
cellular structures were still distinguishable (Fig. 4A). Notably,
in uninjured Cxcr4"'~ myocardium, we found atypical
lipotfuscin-like lipid accumulations with strong osmium tetroxide

fixation (Fig. 4A), likely containing long-chain monounsaturated
fatty acids and resembling those found after dietary fish oil
feeding, known to reduce ischemic damage in rat hearts (18,19).

Subsequent lipid extraction and high-performance liquid
chromatography analysis indicated a marked accumulation of
phosphatidylserine (PS) (fractions 1 to 3) in Cxer4™~ mouse
hearts, which is not present in the hearts of wild-type mice
(Fig. 4B). Using gas chromatography, we analyzed the unsat-
urated fatty acid index of cardiac lipid extracts (triglyceride,
phosphatidylcholine/ethanolamine, PS). The triglyceride frac-
tion obtained from Cxcr4*/~ mouse hearts contained 10%
more unsaturated fatty acids than wild-type mouse hearts, and
6 different unsaturated fatty acids appeared in the triglyceride
fraction of Cxcr4™~ hearts. No differences were noted for
saturated/unsaturated fatty acid content in phosphatidylcholine
or ethanolamine. The fatty acid composition of the 3 PS
fractions is detailed in Online Table 3.

To evaluate a potential contribution of the PS fractions to
cardioprotection in Cxer4"” mice, isolated cardiomyocytes were
pre-incubated with the PS fractions 1, 2, or 3 for 3 h, and the
response to hypoxic stress was analyzed. As evident by dihydro-
ethidium staining to monitor radical formation, all PS fractions
protected cardiomyocytes against hypoxic injury (Fig. 4C). Nota-
bly, PS fraction 1 with the highest percentage of saturated fatty
acids offered the best protection against hypoxic injury. These
data indicate that Cxc4™~ mouse hearts are intrinsically
adapted to hypoxic injury.
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Electron microscopy showed atypical lipofuscin-like lipid accumulation with a strong osmium fixation (A, left side, 1 representative lipid vesicle shown in the inset). After
myocardial infarction (MI), Cxcr4*/~ myocardium exhibits signs of myofibril disorganization and cardiomyocyte swelling but is still distinguishable cellular structure,
whereas wild-type myocardium shows signs of necrosis with dramatic structural disintegration (A, right side). (B) Lipid extraction and high-performance liquid chromatog-
raphy analysis indicate in addition to triglyceride (TG), phosphatidylethanolamine (PE), and phosphatidylcholine (PC), an up-regulation of phosphatidylserine (PS) in
Cxcr4*/~ mouse hearts compared with wildtype hearts. (C) In in vitro hypoxia experiments, pre-incubation of isolated cardiomyocytes with PS fractions protects against
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Discussion

Our data demonstrate the double-edged effects of CXCR4 on
myocardial remodeling after MI and point to a variety of possible
mechanisms with major clinical implications. Compared with
wild-type mice, Cxer4"”~ mice revealed smaller and stable MI
scars due to an attenuation of the acute inflammatory recruitment
of neutrophils, a shift toward a more regenerative monocyte
response, and better adaptation of cardiomyocytes to hypoxic
stress. This was balanced by impaired EOC function, myocardial
neovascularization, and coronary flow recovery, overall amounting

to a lack of improvement in ventricular function. Given the major
efforts to exploit the CXCL12/CXCR4 axis therapeutically to
promote angiogenesis and cellular regeneration, our data provide
important insights into endogenous function of CXCR4 after MI.

First, we found an altered inflammatory pattern in Cxerd™”~
mice after MI characterized by diminished neutrophils and
tissue-degrading Gr1"&" monocytes, myocardial infiltration,
and earlier infiltration with Gr1'" monocytes, followed by
collagen deposition (17). Reduced neutrophil infiltration itself
may substantially affect myocardial injury and reduce MI size
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(20,21) by reducing the release of reactive oxygen species,
proteases, and inflammatory mediators. Recently, CXCR4 was
identified as a central regulator of neutrophil homeostasis
directing their release from bone marrow under stress condi-
tions (20). Although complete disruption or deficiency of
CXCR4 caused an expansion of less mature neutrophils in the
circulation in the chronic context of atherogenesis (22), we
found that an acute mobilization of neutrophils was blocked by
the potent CXCR4 antagonist AMD3645 (23). Similarly, we
observed that MI caused an acute expansion of circulating
neutrophils and their myocardial recruitment, which was at-
tenuated in Cxe4''~ mouse hearts. This is in line with a
recent study that failed to detect neutrophil mobilization after
various forms of stimulation or infection when CXCR4 sig-
naling was abrogated (20). Thus, our data confirm a role of
CXCR4 in injury- or stress-induced neutrophil mobilization,
allowing their subsequent recruitment.

Monocytes play an important and finely tuned role in
cardiac repair (17). We found that after MI, overall mono-
cyte/macrophage infiltration into the myocardium was de-
layed in Cxer4 ™'~ mice owing to a reduced infiltration with
Gr-1"&" inflammatory monocytes during the initial phase,
in a process that may be governed by neutrophil secretory
products (24,25). Preventing Gr-1"8" monocytosis results in a
delayed or inefficient removal of apoptotic cells and necrotic
tissue but does not impede healing (17,26). Conversely,
Gr-1"" monocytes, which promote healing via myofibroblast
accumulation and collagen deposition, were more prevalent
and recruited earlier after MI in Cxer4"'~ mice. This shift to
a more robust repair may contribute to smaller and stable scar
formation. Interestingly, we found that Gr-1"¢" monocytes
from Cxer4"'~ mice did not display reduced CXCR4 expres-
sion. Whereas one may hypothesize that the reparative Gr-1
cells uses additional receptors to compensate for lower CXCR4
levels in recruitment, these data generally imply an important
role of other receptors, namely, CCR2, in the recruitment of
Gr-1"" monocyrtes.

Despite reduced MI size, ventricular function was not
significantly improved in Cxer4 ™'~ mice. This could be due
to the reduced basal coronary flow and to the impaired
coronary flow recovery in Cxcr4 "'~ hearts 4 weeks after ML
As an underlying mechanism, we studied the function of
EOC:s as important contributors to neovascularization after
MI. The SDF-1/Cxcr4 interaction is crucially involved in
the mobilization and recruitment of stem and progenitor
cells to the heart after MI (5,27). Despite appropriate
acquisition of typical endothelial differentiation markers,
splenic EOCs from Cxcr4™'~ mice showed deficient che-
motaxis toward CXCL12 (but not vascular endothelial
growth factor) and reduced tube formation in vitro. Accord-
ingly, myocardial vessel density, endothelial cell content,
vessel invasion in Matrigel and arterial branching in vivo
was impaired in Cxer4"’~ mice. This is in keeping with a
previous study showing that EOCs from Cxcr4™'~ mice
were also significantly impaired to restore blood flow in
ischemic nude mice compared with wild-type EOCs in the
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hindlimb ischemia model (16). Although we show in vitro
that these effects are mostly due to a dysfunction of EOCs,
we cannot exclude that a decrease in surrounding vascular
density also plays a supportive role in our in vivo models
through reducing the number of circulating cells available at
the site of injury. Conversely, a lack of functional improve-
ment in Cxcr4™/~ mice cannot be explained by a modula-
tion of cardiomyocyte contractility by CXCR4 because
CXCL12 has been shown to exert negative inotropic effects
(28) so that one would rather expect improved ventricular
function on inhibition of Cxcr4 deficiency.

Moreover, we performed bone marrow chimera experi-
ments to distinguish the influence of the Cxcr4 heterozy-
gous background and its effect on circulating cells in
normally developed wild-type mice. Despite a reconstitu-
tion with wild-type bone marrow, a reduction of infarction
area and neovascularization persisted in Cxcr4™'~ mice.
Moreover, a significant, albeit less marked, reduction was
observed in wild-type mice reconstituted with Cxerd™’~
bone marrow, indicating that reduced CXCR4 levels on
circulating cells (namely, progenitor cells and leukocytes)
may also contribute to the effects observed after MI in Cxcr4
heterozygous mice, independently of their abnormal cardio-
vascular development.

Notably, the reduced basal and neovascularization of
Cxer4™'~ hearts without any sign of physiologic dysfunction
raises several questions. Diminished blood supply should
lead to a series of histopathologic and structural changes of
the myocardium with an increase in cardiomyocyte apopto-
sis, ventricular mass and volume, and progressive decline in
left ventricular performance. None of these parameters,
however, differ in Cxcr4"~ mice. Moreover, recent data
indicate that CXCR4 expression on cardiomyocytes is not
essential for cardiac development and has no major role in
ventricular remodeling after MI (29). Because Cxcr4*'~
myocardium is spared and hypoxic injury seems to be less
extensive, compared with that in wild-type mice, we assume
that the protective mechanism in Cxer4™’~ myocardium is
mostly due to adaptive changes during embryogenesis.
Using electron microscopy, we observed lipofuscin-like lipid
accumulations, which resembled those found in rat hearts
after dietary fish oil feeding (18). A diet enriched with n-3
fatty acids can reduce ischemic damage to the heart (30) and
may represent a possible lead to protection, but this clearly
requires further investigation into underlying mechanisms.

Another notable difference in the lipid extracts of
Cxer4™'~ myocardium is the high levels of PS, generally
known as a marker of cell death (31). However, PS supports
other cell functions, including mitochondrial membrane
integrity and activation of protein kinase C, which is
important in hypoxia tolerance during late preconditioning
(32), as well as in the inhibition of specific immune
responses (33). In our study, the permanently decreased
coronary flow in Cxcr4™'~ mice may induce a chronic
ischemia and thus may force cardiomyocytes to adapt even
from early stages of embryonic development. An increase in



2422 Liehn et al.

CXCL12/CXCR4 Axis in Myocardial Infarction

cardiac PS seems to be a possible cause mediating this
adaptive mechanism because pre-incubation of cardiomyo-
cytes with PS isolated from Cxcr4™'~ mouse hearts pro-
tected cardiomyocytes against hypoxic injury. However, the
exact mechanism remains to be established.

Extensive attempts have been made to directly affect the
CXCL12/CXCR4 axis (e.g., by direct injection, nanofiber-
mediated delivery of CXCL12, or overexpression of
CXCL12/CXCR4 in cells transplanted into the myocar-
dium (5-11), aiming to reduce MI size and to improve
ventricular function after MI. The double-edged effects of
CXCR4 are illustrated by an alteration of the inflammatory
response and protection against hypoxic stress, as well as
impaired EOC function, neovascularization, and coronary
flow recovery. Pharmacologic antagonism of CXCR4 with
AMD3100 has been reported to reduce infarct size and to
improve ventricular function after MI in rats (12). Although
the decrease in MI size is consistent with our findings, an
improved contractility has been explained by a suppression
of the hypertrophic response in the noninfarct area. This
differs from Cxcr4*/~ mice, which have intrinsically reduced
coronary flow and can be considered as a model for
congenitally impaired vascularization and adaptation to
hypoxia.

Limitations and Conclusions

Although studies in bone marrow chimeras suggested a role
of CXCR4 on cells infiltrating from the circulation in
explaining the reduction in infarct size, one notable limita-
tion of our study is clearly the lack of mice with specific and
inducible deletion of CXCR4 in either circulating cells or
resident myocardial cells to better dissect the underlying
mechanisms. In addition, caution should be exerted when
extrapolating these results to an inhibition of CXCR4 in
the human system. Nevertheless, cell-specific, context-
dependent, and long-term effects of CXCR4 interference
or CXCL12 application need to be carefully taken into
account when devising therapeutic strategies for MI and
ischemic cardiomyopathy.
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